Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Microbiol Spectr ; 10(1): e0254621, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35080463

RESUMO

Mycobacterium abscessus is the etiological agent of severe pulmonary infections in vulnerable patients, such as those with cystic fibrosis (CF), where it represents a relevant cause of morbidity and mortality. Treatment of pulmonary infections caused by M. abscessus remains extremely difficult, as this species is resistant to most classes of antibiotics, including macrolides, aminoglycosides, rifamycins, tetracyclines, and ß-lactams. Here, we show that apoptotic body like liposomes loaded with phosphatidylinositol 5-phosphate (ABL/PI5P) enhance the antimycobacterial response, both in macrophages from healthy donors exposed to pharmacological inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) and in macrophages from CF patients, by enhancing phagosome acidification and reactive oxygen species (ROS) production. The treatment with liposomes of wild-type as well as CF mice, intratracheally infected with M. abscessus, resulted in about a 2-log reduction of pulmonary mycobacterial burden and a significant reduction of macrophages and neutrophils in bronchoalveolar lavage fluid (BALF). Finally, the combination treatment with ABL/PI5P and amikacin, to specifically target intracellular and extracellular bacilli, resulted in a further significant reduction of both pulmonary mycobacterial burden and inflammatory response in comparison with the single treatments. These results offer the conceptual basis for a novel therapeutic regimen based on antibiotic and bioactive liposomes, used as a combined host- and pathogen-directed therapeutic strategy, aimed at the control of M. abscessus infection, and of related immunopathogenic responses, for which therapeutic options are still limited. IMPORTANCE Mycobacterium abscessus is an opportunistic pathogen intrinsically resistant to many antibiotics, frequently linked to chronic pulmonary infections, and representing a relevant cause of morbidity and mortality, especially in immunocompromised patients, such as those affected by cystic fibrosis. M. abscessus-caused pulmonary infection treatment is extremely difficult due to its high toxicity and long-lasting regimen with life-impairing side effects and the scarce availability of new antibiotics approved for human use. In this context, there is an urgent need for the development of an alternative therapeutic strategy that aims at improving the current management of patients affected by chronic M. abscessus infections. Our data support the therapeutic value of a combined host- and pathogen-directed therapy as a promising approach, as an alternative to single treatments, to simultaneously target intracellular and extracellular pathogens and improve the clinical management of patients infected with multidrug-resistant pathogens such as M. abscessus.


Assuntos
Antibacterianos/administração & dosagem , Fibrose Cística/imunologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Mycobacterium abscessus/efeitos dos fármacos , Fosfatos de Fosfatidilinositol/administração & dosagem , Amicacina/administração & dosagem , Amicacina/química , Animais , Antibacterianos/química , Fibrose Cística/complicações , Fibrose Cística/genética , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Feminino , Humanos , Lipossomos/química , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Mycobacterium não Tuberculosas/etiologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/fisiologia , Fagossomos/imunologia , Fosfatos de Fosfatidilinositol/química , Espécies Reativas de Oxigênio/imunologia
2.
Sci Rep ; 11(1): 23256, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853321

RESUMO

There is evidence that the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is highly expressed at the apical pole of ciliated cells in human bronchial epithelium (HBE), however recent studies have detected little CFTR mRNA in those cells. To understand this discrepancy we immunostained well differentiated primary HBE cells using CFTR antibodies. We confirmed apical immunofluorescence in ciliated cells and quantified the covariance of the fluorescence signals and that of an antibody against the ciliary marker centrin-2 using image cross-correlation spectroscopy (ICCS). Super-resolution stimulated emission depletion (STED) imaging localized the immunofluorescence in distinct clusters at the bases of the cilia. However, similar apical fluorescence was observed when the monoclonal CFTR antibodies 596, 528 and 769 were used to immunostain ciliated cells expressing F508del-CFTR, or cells lacking CFTR due to a Class I mutation. A BLAST search using the CFTR epitope identified a similar amino acid sequence in the ciliary protein rootletin X1. Its expression level correlated with the intensity of immunostaining by CFTR antibodies and it was detected by 596 antibody after transfection into CFBE cells. These results may explain the high apparent expression of CFTR in ciliated cells and reports of anomalous apical immunofluorescence in well differentiated cells that express F508del-CFTR.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Fibrose Cística/patologia , Proteínas do Citoesqueleto/isolamento & purificação , Brônquios/citologia , Células Cultivadas , Cílios/metabolismo , Cílios/patologia , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Proteínas do Citoesqueleto/imunologia , Células Epiteliais , Imunofluorescência , Humanos
3.
PLoS One ; 15(12): e0242749, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33264332

RESUMO

Cystic fibrosis (CF) is due to mutations in the CF-transmembrane conductance regulator (CFTR) and CF-related diabetes (CFRD) is its most common co-morbidity, affecting ~50% of all CF patients, significantly influencing pulmonary function and longevity. Yet, the complex pathogenesis of CFRD remains unclear. Two non-mutually exclusive underlying mechanisms have been proposed in CFRD: i) damage of the endocrine cells secondary to the severe exocrine pancreatic pathology and ii) intrinsic ß-cell impairment of the secretory response in combination with other factors. The later has proven difficult to determine due to low expression of CFTR in ß-cells, which results in the general perception that this Cl-channel does not participate in the modulation of insulin secretion or the development of CFRD. The objective of the present work is to demonstrate CFTR expression at the molecular and functional levels in insulin-secreting ß-cells in normal human islets, where it seems to play a role. Towards this end, we have used immunofluorescence confocal and immunofluorescence microscopy, immunohistochemistry, RT-qPCR, Western blotting, pharmacology, electrophysiology and insulin secretory studies in normal human, rat and mouse islets. Our results demonstrate heterogeneous CFTR expression in human, mouse and rat ß-cells and provide evidence that pharmacological inhibition of CFTR influences basal and stimulated insulin secretion in normal mouse islets but not in islets lacking this channel, despite being detected by electrophysiological means in ~30% of ß-cells. Therefore, our results demonstrate a potential role for CFTR in the pancreatic ß-cell secretory response suggesting that intrinsic ß-cell dysfunction may also participate in the pathogenesis of CFRD.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Secretoras de Insulina/metabolismo , Adulto , Idoso , Animais , Anticorpos/metabolismo , Antígenos/metabolismo , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Feminino , Humanos , Lactente , Secreção de Insulina , Masculino , Camundongos , Pessoa de Meia-Idade , Ratos , Reprodutibilidade dos Testes , Adulto Jovem
4.
Front Immunol ; 11: 1871, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973772

RESUMO

Macrophage dysfunction is fundamentally related to altered immunity in cystic fibrosis (CF). How genetic deficits in the cystic fibrosis transmembrane conductance regulator (CFTR) lead to these defects remains unknown. Rapid advances in genomic editing such as the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR/Cas9) system provide new tools for scientific study. We aimed to create a stable CFTR knockout (KO) in human macrophages in order to study how CFTR regulates macrophage function. Peripheral blood monocytes were isolated from non-CF healthy volunteers and differentiated into monocyte-derived macrophages (MDMs). MDMs were transfected with a CRISPR Cas9 CFTR KO plasmid. CFTR KO efficiency was verified and macrophage halide efflux, phagocytosis, oxidative burst, apoptosis, and cytokine functional assays were performed. CFTR KO in human MDMs was efficient and stable after puromycin selection. CFTR KO was confirmed by CFTR mRNA and protein expression. CFTR function was abolished in CFTR KO MDMs. CFTR KO recapitulated known defects in human CF MDM (CFTR class I/II variants) dysfunction including (1) increased apoptosis, (2) decreased phagocytosis, (3) reduced oxidative burst, and (4) increased bacterial load. Activation of the oxidative burst via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase assembly was diminished in CFTR KO MDMs (decreased phosphorylated p47phox). Cytokine production was unchanged or decreased in response to infection in CFTR KO MDMs. In conclusion, we developed a primary human macrophage CFTR KO system. CFTR KO mimics most pathology observed in macrophages obtained from persons with CF, which suggests that many aspects of CF macrophage dysfunction are CFTR-dependent and not just reflective of the CF inflammatory milieu.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Técnicas de Inativação de Genes/métodos , Macrófagos/imunologia , Adulto , Idoso , Sistemas CRISPR-Cas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Edição de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Front Immunol ; 11: 1733, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849617

RESUMO

Inflammation-related progressive lung destruction is the leading causes of premature death in cystic fibrosis (CF), a genetic disorder caused by a defective cystic fibrosis transmembrane conductance regulator (CFTR). However, therapeutic targeting of inflammation has been hampered by a lack of understanding of the links between a dysfunctional CFTR and the deleterious innate immune response in CF. Herein, we used a CFTR-depleted zebrafish larva, as an innovative in vivo vertebrate model, to understand how CFTR dysfunction leads to abnormal inflammatory status in CF. We show that impaired CFTR-mediated inflammation correlates with an exuberant neutrophilic response after injury: CF zebrafish exhibit enhanced and sustained accumulation of neutrophils at wounds. Excessive epithelial oxidative responses drive enhanced neutrophil recruitment towards wounds. Persistence of neutrophils at inflamed sites is associated with impaired reverse migration of neutrophils and reduction in neutrophil apoptosis. As a consequence, the increased number of neutrophils at wound sites causes tissue damage and abnormal tissue repair. Importantly, the molecule Tanshinone IIA successfully accelerates inflammation resolution and improves tissue repair in CF animal. Our findings bring important new understanding of the mechanisms underlying the inflammatory pathology in CF, which could be addressed therapeutically to prevent inflammatory lung damage in CF patients with potential improvements in disease outcomes.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Infiltração de Neutrófilos/imunologia , Cicatrização/imunologia , Proteínas de Peixe-Zebra/imunologia , Animais , Animais Geneticamente Modificados , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
6.
J Leukoc Biol ; 108(6): 1777-1785, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32531843

RESUMO

Persistent neutrophilic inflammation is a hallmark of cystic fibrosis (CF). However, the mechanisms underlying this outstanding pathology remain incompletely understood. Here, we report that CFTR in myeloid immune cells plays a pivotal role in control of neutrophilic inflammation. Myeloid CFTR-Knockout (Mye-Cftr-/-) mice and congenic wild-type (WT) mice were challenged peritoneally with zymosan particles at different doses, creating aseptic peritonitis with varied severity. A high-dose challenge resulted in significantly higher mortality in Mye-Cftr-/- mice, indicating an intrinsic defect in host control of inflammation in mice whose myeloid cells lack CF. The low-dose challenge demonstrated an impaired resolution of inflammation in Mye-Cftr-/- mice, reflected by a significant overproduction of proinflammatory cytokines, including neutrophil chemokines MIP-2 and KC, and sustained accumulation of neutrophils. Tracing neutrophil mobilization in vivo demonstrated that myeloid CF mice recruited significantly more neutrophils than did WT mice. Pulmonary challenge with zymosan elicited exuberant inflammation in the lung and recapitulated the findings from peritoneal challenge. To determine the major type of cell that was primarily responsible for the over-recruitment of neutrophils, we purified and cultured ex vivo zymosan-elicited peritoneal neutrophils and macrophages. The CF neutrophils produced significantly more MIP-2 than did the WT counterparts, and peripheral blood neutrophils isolated from myeloid CF mice also produced significantly more MIP-2 after zymosan stimulation in vitro. These data altogether suggest that CFTR dysfunction in myeloid immune cells, especially neutrophils, leads to hyperinflammation and excessive neutrophil mobilization in the absence of infection. Thus, dysregulated inflammation secondary to abnormal or absent CFTR in myeloid cells may underlie the clinically observed neutrophilic inflammation in CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Fibrose Cística/imunologia , Macrófagos Peritoneais/imunologia , Neutrófilos/imunologia , Animais , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Mutação com Perda de Função , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Mutantes , Neutrófilos/patologia , Zimosan/toxicidade
7.
Cell Mol Life Sci ; 77(22): 4485-4503, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32367193

RESUMO

Cystic fibrosis (CF) is one of the most common life-limiting recessive genetic disorders in Caucasians, caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). CF is a multi-organ disease that involves the lungs, pancreas, sweat glands, digestive and reproductive systems and several other tissues. This debilitating condition is associated with recurrent lower respiratory tract bacterial and viral infections, as well as inflammatory complications that may eventually lead to pulmonary failure. Immune cells play a crucial role in protecting the organs against opportunistic infections and also in the regulation of tissue homeostasis. Innate immune cells are generally affected by CFTR mutations in patients with CF, leading to dysregulation of several cellular signalling pathways that are in continuous use by these cells to elicit a proper immune response. There is substantial evidence to show that airway epithelial cells, neutrophils, monocytes and macrophages all contribute to the pathogenesis of CF, underlying the importance of the CFTR in innate immune responses. The goal of this review is to put into context the important role of the CFTR in different innate immune cells and how CFTR dysfunction contributes to the pathogenesis of CF, highlighting several signalling pathways that may be dysregulated in cells with CFTR mutations.


Assuntos
Fibrose Cística/genética , Fibrose Cística/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Mutação/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Humanos , Mutação/imunologia
8.
Nutrients ; 12(3)2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183316

RESUMO

Recent research has linked sphingolipid (SL) metabolism with cystic fibrosis transmembrane conductance regulator (CFTR) activity, affecting bioactive lipid mediator sphingosine-1-phosphate (S1P). We hypothesize that loss of CFTR function in cystic fibrosis (CF) patients influenced plasma S1P levels. Total and unbound plasma S1P levels were measured in 20 lung-transplanted adult CF patients and 20 healthy controls by mass spectrometry and enzyme-linked immunosorbent assay (ELISA). S1P levels were correlated with CFTR genotype, routine laboratory parameters, lung function and pathogen colonization, and clinical symptoms. Compared to controls, CF patients showed lower unbound plasma S1P, whereas total S1P levels did not differ. A positive correlation of total and unbound S1P levels was found in healthy controls, but not in CF patients. Higher unbound S1P levels were measured in ΔF508-homozygous compared to ΔF508-heterozygous CF patients (p = 0.038), accompanied by higher levels of HDL in ΔF508-heterozygous patients. Gastrointestinal symptoms were more common in ΔF508 heterozygotes compared to ΔF508 homozygotes. This is the first clinical study linking plasma S1P levels with CFTR function and clinical presentation in adult CF patients. Given the emerging role of immunonutrition in CF, our study might pave the way for using S1P as a novel biomarker and nutritional target in CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Heterozigoto , Homozigoto , Enteropatias , Transplante de Pulmão , Lisofosfolipídeos , Esfingosina/análogos & derivados , Adulto , Fibrose Cística/sangue , Fibrose Cística/genética , Fibrose Cística/imunologia , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Humanos , Enteropatias/sangue , Enteropatias/dietoterapia , Enteropatias/genética , Enteropatias/imunologia , Pulmão/imunologia , Pulmão/metabolismo , Lisofosfolipídeos/sangue , Lisofosfolipídeos/imunologia , Masculino , Pessoa de Meia-Idade , Esfingosina/sangue , Esfingosina/imunologia
9.
PLoS Pathog ; 16(1): e1008251, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961914

RESUMO

Patients with cystic fibrosis (CF) have altered fecal microbiomes compared to those of healthy controls. The magnitude of this dysbiosis correlates with measures of CF gastrointestinal (GI) disease, including GI inflammation and nutrient malabsorption. However, whether this dysbiosis is caused by mutations in the CFTR gene, the underlying defect in CF, or whether CF-associated dysbiosis augments GI disease was not clear. To test the relationships between CFTR dysfunction, microbes, and intestinal health, we established a germ-free (GF) CF mouse model and demonstrated that CFTR gene mutations are sufficient to alter the GI microbiome. Furthermore, flow cytometric analysis demonstrated that colonized CF mice have increased mesenteric lymph node and spleen TH17+ cells compared with non-CF mice, suggesting that CFTR defects alter adaptive immune responses. Our findings demonstrate that CFTR mutations modulate both the host adaptive immune response and the intestinal microbiome.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/microbiologia , Disbiose/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fibrose Cística/genética , Fibrose Cística/imunologia , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Modelos Animais de Doenças , Disbiose/genética , Disbiose/imunologia , Feminino , Humanos , Intestinos/imunologia , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação
11.
Int J Mol Sci ; 20(23)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766758

RESUMO

Nontuberculous mycobacteria (NTM) have recently emerged as important pathogens among cystic fibrosis (CF) patients worldwide. Mycobacterium abscessus is becoming the most worrisome NTM in this cohort of patients and recent findings clarified why this pathogen is so prone to this disease. M. abscessus drug therapy takes up to 2 years and its failure causes an accelerated lung function decline. The M. abscessus colonization of lung alveoli begins with smooth strains producing glycopeptidolipids and biofilm, whilst in the invasive infection, "rough" mutants are responsible for the production of trehalose dimycolate, and consequently, cording formation. Human-to-human M. abscessus transmission was demonstrated among geographically separated CF patients by whole-genome sequencing of clinical isolates worldwide. Using a M. abscessus infected CF zebrafish model, it was demonstrated that CFTR (cystic fibrosis transmembrane conductance regulator) dysfunction seems to have a specific role in the immune control of M. abscessus infections only. This pathogen is also intrinsically resistant to many drugs, thanks to its physiology and to the acquisition of new mechanisms of drug resistance. Few new compounds or drug formulations active against M. abscessus are present in preclinical and clinical development, but recently alternative strategies have been investigated, such as phage therapy and the use of ß-lactamase inhibitors.


Assuntos
Doenças Transmissíveis Emergentes , Fibrose Cística , Farmacorresistência Bacteriana Múltipla/imunologia , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Alvéolos Pulmonares , Animais , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/imunologia , Doenças Transmissíveis Emergentes/patologia , Fibrose Cística/epidemiologia , Fibrose Cística/imunologia , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Modelos Animais de Doenças , Humanos , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/patologia , Mycobacterium abscessus/imunologia , Mycobacterium abscessus/patogenicidade , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/microbiologia , Peixe-Zebra
12.
Ital J Pediatr ; 45(1): 40, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30898172

RESUMO

Familial loss-of-function mutations of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR) channel protein cause cystic fibrosis (CF), the most frequent inherited life-threatening disease in the Caucasian population. A recent study indicates that the gluten/gliadin-derived peptide (P31-43) can cause CFTR inhibition in intestinal epithelial cells, thus causing a local stress response that contributes to the immunopathology of celiac disease (CD). Accordingly, an increased prevalence of CD has been observed in several cohorts of CF patients. CD is characterized by a permanent intolerance to gluten/gliadin proteins occurring in a proportion of susceptible individuals who bear the human leukocyte antigen (HLA) DQ2/DQ8. In CD, perturbations of the intestinal environment, together with the activation of the innate immune system by P31-43, are essential for rendering other immunodominant gliadin peptide fully antigenic, thus triggering an adaptive immune response with an autoimmune component. P31-43-induced CFTR inhibition elicits the danger signals that ignite the epithelial stress response and perturb epithelial proteostasis. Importantly, potentiators of CFTR channel gating, such as the FDA-approved drug Ivacaftor, prevent P31-43 driven CFTR inhibition and suppress the gliadin-induced stress response in cells from celiac patients, as well as the immunopathology developing in gliadin-sensitive mice. Thus, CFTR potentiators may represent a novel therapeutic option for celiac patients.


Assuntos
Doença Celíaca/imunologia , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Gliadina/imunologia , Imunidade Adaptativa , Aminofenóis/uso terapêutico , Doença Celíaca/tratamento farmacológico , Agonistas dos Canais de Cloreto/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Células Epiteliais/imunologia , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Quinolonas/uso terapêutico
13.
Am J Respir Cell Mol Biol ; 61(3): 301-311, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30848661

RESUMO

Cystic fibrosis (CF) is caused by mutations of the gene encoding the CF transmembrane conductance regulator. It remains unclear whether the abnormal immune response in CF involves extrinsic signals released from the external or internal environment. We sought to characterize the peripheral immune signatures in CF and its association with clinical phenotypes. Healthy peripheral blood mononuclear cells (PBMCs) were cultured with plasma from CF probands (CFPs) or healthy control subjects (HCs) followed by nCounter gene and microRNA (miRNA) profiling. A discovery cohort of 12 CFPs and 12 HCs and a validation cohort of 103 CFPs and 31 HCs (our previous microarray data [GSE71799]) were analyzed to characterize the composition of cultured immune cells and establish a miRNA‒mRNA network. Cell compositions and miRNA profiles were associated with clinical characteristics of the cohorts. Significantly differentially expressed genes and abundance of myeloid cells were downregulated in PMBCs after culture with CF plasma (P < 0.05). Top-ranked miRNAs that increased in response to CF plasma (adjusted P < 0.05) included miR-155 and miR-146a, which target many immune-related genes, such as IL-8. Pseudomonas aeruginosa infection was negatively associated with abundance of monocytes and the presence of those regulatory miRNAs. Extrinsic signals in plasma from patients with CF led to monocyte inactivation and miRNA upregulation in PBMCs. An improved understanding of the immune effects of extrinsic factors in CF holds great promise for integrating immunomodulatory cell therapies into current treatment strategies in CF.


Assuntos
Infecções Bacterianas/imunologia , Fibrose Cística/microbiologia , Leucócitos Mononucleares/microbiologia , Monócitos/microbiologia , Infecções por Pseudomonas/imunologia , Células Cultivadas , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Pulmão/imunologia , Pulmão/microbiologia , MicroRNAs/genética , Plasma/microbiologia , Pseudomonas aeruginosa/imunologia
14.
Cell Rep ; 26(7): 1828-1840.e4, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759393

RESUMO

Infection by rapidly growing Mycobacterium abscessus is increasingly prevalent in cystic fibrosis (CF), a genetic disease caused by a defective CF transmembrane conductance regulator (CFTR). However, the potential link between a dysfunctional CFTR and vulnerability to M. abscessus infection remains unknown. Herein, we exploit a CFTR-depleted zebrafish model, recapitulating CF immuno-pathogenesis, to study the contribution of CFTR in innate immunity against M. abscessus infection. Loss of CFTR increases susceptibility to infection through impaired NADPH oxidase-dependent restriction of intracellular growth and reduced neutrophil chemotaxis, which together compromise granuloma formation and integrity. As a consequence, extracellular multiplication of M. abscessus expands rapidly, inducing abscess formation and causing lethal infections. Because these phenotypes are not observed with other mycobacteria, our findings highlight the crucial and specific role of CFTR in the immune control of M. abscessus by mounting effective oxidative responses.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Mycobacterium abscessus/imunologia , Estresse Oxidativo/imunologia , Proteínas de Peixe-Zebra/imunologia , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/prevenção & controle , Mycobacterium abscessus/isolamento & purificação , Espécies Reativas de Oxigênio/imunologia , Peixe-Zebra
15.
Immunity ; 47(6): 1169-1181.e7, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29246444

RESUMO

The tumor suppressor PTEN controls cell proliferation by regulating phosphatidylinositol-3-kinase (PI3K) activity, but the participation of PTEN in host defense against bacterial infection is less well understood. Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. We found that Ptenl-/- mice, which lack the NH2-amino terminal splice variant of PTEN, were unable to eradicate Pseudomonas aeruginosa from the airways and could not generate sufficient anti-inflammatory PI3K activity, similar to what is observed in CF. PTEN and the CF transmembrane conductance regulator (CFTR) interacted directly and this interaction was necessary to position PTEN at the membrane. CF patients under corrector-potentiator therapy, which enhances CFTR transport to the membrane, have increased PTEN amounts. These findings suggest that improved CFTR trafficking could enhance P. aeruginosa clearance from the CF airway by activating PTEN-mediated anti-bacterial responses and might represent a therapeutic strategy.


Assuntos
Membrana Celular/imunologia , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Fibrose Cística/imunologia , PTEN Fosfo-Hidrolase/imunologia , Infecções por Pseudomonas/imunologia , Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Animais , Benzodioxóis/farmacologia , Membrana Celular/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/microbiologia , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/imunologia , Ligação Proteica , Conformação Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/imunologia , Quinolonas/farmacologia , Transdução de Sinais
16.
Artigo em Inglês | MEDLINE | ID: mdl-28713772

RESUMO

More than two decades after cloning the cystic fibrosis transmembrane regulator (CFTR) gene, the defective gene in cystic fibrosis (CF), we still do not understand how dysfunction of this ion channel causes lung disease and the tremendous neutrophil burden which persists within the airways; nor why chronic colonization by Pseudomonas aeruginosa develops in CF patients who are thought to be immunocompetent. It appears that the microenvironment within the lung of CF patients provides favorable conditions for both P. aeruginosa colonization and neutrophil survival. In this context, the ability of bacteria to induce hypoxia, which in turn affects neutrophil survival is an additional level of complexity that needs to be accounted for when controlling neutrophil fate in CF. Recent studies have underscored the importance of neutrophils in innate immunity and their functions appear to extend far beyond their well-described role in antibacterial defense. Perhaps a disturbance in neutrophil reprogramming during the course of an infection severely modulates the inflammatory response in CF. Furthermore there is an emerging concept that the CFTR itself may be an immune modulator and stimulating CFTR function in CF patients could promote neutrophil and macrophages antimicrobial function. Fostering the resolution of inflammation by favoring neutrophil apoptosis could preserve their microbicidal activities but decrease their proinflammatory potential. In this context, triggering neutrophil apoptosis with roscovitine may be a potential therapeutic option and this is currently being evaluated in CF patients. In the present review we discuss how neutrophils functions are disturbed in CF and how this may relate to chronic infection with P. aeuginosa and we propose novel research directions aimed at modulating neutrophil survival, dampening lung inflammation and ultimately leading to an amelioration of the lung disease.


Assuntos
Fibrose Cística/imunologia , Infecções/imunologia , Inflamação/imunologia , Neutrófilos/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/patogenicidade , Animais , Antibacterianos/farmacologia , Apoptose , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Humanos , Hipóxia , Imunidade Inata , Pulmão/microbiologia , Pulmão/patologia , Pneumopatias/etiologia , Pneumopatias/microbiologia , Macrófagos/imunologia , Camundongos , Neutrófilos/microbiologia , Infecções por Pseudomonas/etiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/imunologia , Purinas/farmacologia , Roscovitina , Virulência
17.
Am J Physiol Cell Physiol ; 312(4): C357-C366, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28122735

RESUMO

In the healthy lung the opportunistic pathogen, Pseudomonas aeruginosa, is rapidly eliminated by mucociliary clearance, a process that is dependent on the activity of the CFTR anion channel that, in concert with a number of other transport proteins, regulates the volume and composition of the periciliary surface liquid. This fluid layer is essential to enable cilia to clear pathogens from the lungs. However, in cystic fibrosis (CF), mutations in the CFTR gene reduce Cl- and [Formula: see text] secretion, thereby decreasing periciliary surface liquid volume and mucociliary clearance of bacteria. In CF this leads to persistent infection with the opportunistic pathogen, P. aeruginosa, which is the cause of reduced lung function and death in ~95% of CF patients. Others and we have conducted studies to elucidate the effects of P. aeruginosa on wild-type and Phe508del-CFTR Cl- secretion as well as on the host immune response. These studies have demonstrated that Cif (CFTR inhibitory factor), a virulence factor secreted by P. aeruginosa, is associated with reduced lung function in CF and induces the ubiquitination and degradation of wt-CFTR as well as TAP1, which plays a key role in viral and bacterial antigen presentation. Cif also enhances the degradation of Phe508del-CFTR that has been rescued by ORKAMBI, a drug approved for CF patients homozygous for the Phe508del-CFTR mutation, thereby reducing drug efficacy. This review is based on the Hans Ussing Distinguished Lecture at the 2016 Experimental Biology Meeting given by the author.


Assuntos
Cloro/imunologia , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Mucosa Respiratória/imunologia , Humanos , Imunidade nas Mucosas/imunologia , Ativação do Canal Iônico/imunologia , Modelos Imunológicos , Depuração Mucociliar/imunologia , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/microbiologia
18.
Cell Mol Life Sci ; 74(1): 93-115, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27714410

RESUMO

Salt and fluid absorption and secretion are two processes that are fundamental to epithelial function and whole body fluid homeostasis, and as such are tightly regulated in epithelial tissues. The CFTR anion channel plays a major role in regulating both secretion and absorption in a diverse range of epithelial tissues, including the airways, the GI and reproductive tracts, sweat and salivary glands. It is not surprising then that defects in CFTR function are linked to disease, including life-threatening secretory diarrhoeas, such as cholera, as well as the inherited disease, cystic fibrosis (CF), one of the most common life-limiting genetic diseases in Caucasian populations. More recently, CFTR dysfunction has also been implicated in the pathogenesis of acute pancreatitis, chronic obstructive pulmonary disease (COPD), and the hyper-responsiveness in asthma, underscoring its fundamental role in whole body health and disease. CFTR regulates many mechanisms in epithelial physiology, such as maintaining epithelial surface hydration and regulating luminal pH. Indeed, recent studies have identified luminal pH as an important arbiter of epithelial barrier function and innate defence, particularly in the airways and GI tract. In this chapter, we will illustrate the different operational roles of CFTR in epithelial function by describing its characteristics in three different tissues: the airways, the pancreas, and the sweat gland.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Epitélio/fisiologia , Pulmão/fisiologia , Pâncreas/fisiologia , Glândulas Sudoríparas/fisiologia , Animais , Bicarbonatos/imunologia , Bicarbonatos/metabolismo , Cloretos/imunologia , Cloretos/metabolismo , Fibrose Cística/imunologia , Fibrose Cística/metabolismo , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Epitélio/imunologia , Epitélio/metabolismo , Epitélio/fisiopatologia , Humanos , Imunidade Inata , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Pâncreas/imunologia , Pâncreas/metabolismo , Pâncreas/fisiopatologia , Glândulas Sudoríparas/imunologia , Glândulas Sudoríparas/metabolismo , Glândulas Sudoríparas/fisiopatologia
19.
PLoS One ; 11(8): e0158994, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27483469

RESUMO

Cystic fibrosis is the most common genetic disease among Caucasians and affects tissues including lung, pancreas and reproductive tracts. It has been shown that Endoplasmic Reticulum (ER) stress and heat shock response are two major deregulated functional modules related to CFTR dysfunction. To identify the impact of CFTR deletion during spermatogenesis, we examined the expression of spermiogenesis-related genes in the testis of CFTR mutant mice (CF mice). We confirmed expression changes of MSY2, a germ cell specific RNA binding protein, resulting from deletion of CFTR in testis. Furthermore, real time PCR and Western blot results showed that an inflammatory response was activated in CF mice testis, as reflected by the altered expression of cytokines. We demonstrate for the first time that expression of MSY2 is decreased in CF mice. Our results suggest that CFTR deletion in testis influences inflammatory responses and these features are likely to be due to the unique environment of the seminiferous tubule during the spermatogenesis process. The current study also suggests avenues to understand the pathophysiology of CFTR during spermatogenesis and provides targets for the possible treatment of CFTR-related infertility.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Deleção de Genes , Inflamação/genética , Espermatogênese , Testículo/citologia , Testículo/imunologia , Canal de Ânion 1 Dependente de Voltagem/imunologia , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Regulação da Expressão Gênica , Inflamação/imunologia , Masculino , Camundongos Endogâmicos CFTR , NF-kappa B/imunologia , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Testículo/metabolismo , Testículo/ultraestrutura
20.
MAbs ; 8(6): 1167-76, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27185291

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel in the apical surface of epithelial cells in the airway and gastrointestinal tract, and mutation of CFTR is the underlying cause of cystic fibrosis. However, the precise molecular details of the structure and function of CFTR in native and disease states remains elusive and cystic fibrosis researchers are hindered by a lack of high specificity, high affinity binding reagents for use in structural and biological studies. Here, we describe a panel of synthetic antigen-binding fragments (Fabs) isolated from a phage-displayed library that are specific for intracellular domains of CFTR that include the nucleotide-binding domains (NBD1 and NBD2), the R-region, and the regulatory insertion loop of NBD1. Binding assays performed under conditions that promote the native fold of the protein demonstrated that all Fabs recognized full-length CFTR. However, only the NBD1-specific Fab recognized denatured CFTR by western blot, suggesting a conformational epitope requirement for the other Fabs. Surface plasmon resonance experiments showed that the R-region Fab binds with high affinity to both the phosphorylated and unphosphorylated R-region. In addition, NMR analysis of bound versus unbound R-region revealed a distinct conformational effect upon Fab binding. We further defined residues involved with antibody recognition using an overlapping peptide array. In summary, we describe methodology complementary to previous hybridoma-based efforts to develop antibody reagents to CFTR, and introduce a synthetic antibody panel to aid structural and biological studies.


Assuntos
Anticorpos/química , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Fragmentos Fab das Imunoglobulinas/química , Anticorpos/genética , Afinidade de Anticorpos , Epitopos/química , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Espectroscopia de Ressonância Magnética , Biblioteca de Peptídeos , Fosforilação , Domínios Proteicos , Engenharia de Proteínas , Dobramento de Proteína , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA